skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dell’Oro, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The electron antineutrino flux limits are presented for the brightest gamma-ray burst (GRB) of all time, GRB221009A, over a range of 1.8–200 MeV using the Kamioka Liquid Scintillator Antineutrino Detector. Using multiple time windows ranging from minutes to days surrounding the event to search for electron antineutrinos coincident with the GRB, we set an upper limit on the flux under the assumption of several power-law neutrino source spectra, with power-law indices ranging from 1.5 to 3 in steps of 0.5. No excess was observed in any time windows ranging from seconds to days around the event trigger timeT0. For a power-law index of 2 and a time window ofT0 ±  500 s, a flux upper limit of 2.34  ×  109cm−2was calculated. The limits are compared to the results presented by IceCube. 
    more » « less
    Free, publicly-accessible full text available March 7, 2026
  2. Abstract CUPID, the CUORE Upgrade with Particle Identification, is a next-generation experiment to search for neutrinoless double beta decay ($$0\mathrm {\nu \beta \beta }$$ 0 ν β β ) and other rare events using enriched Li$$_{2}$$ 2 $$^{100}$$ 100 MoO$$_{4}$$ 4 scintillating bolometers. It will be hosted by the CUORE cryostat located at the Laboratori Nazionali del Gran Sasso in Italy. The main physics goal of CUPID is to search for$$0\mathrm {\nu \beta \beta }$$ 0 ν β β of$$^{100}$$ 100 Mo with a discovery sensitivity covering the full neutrino mass regime in the inverted ordering scenario, as well as the portion of the normal ordering regime with lightest neutrino mass larger than 10 meV. With a conservative background index of 10$$^{-4}$$ - 4  cts$$/($$ / ( keV$$\cdot $$ · kg$$\cdot $$ · yr$$)$$ ) , 240 kg isotope mass, 5 keV FWHM energy resolution at 3 MeV and 10 live-years of data taking, CUPID will have a 90% C.L. half-life exclusion sensitivity of$$1.8\cdot 10^{27}$$ 1.8 · 10 27  yr, corresponding to an effective Majorana neutrino mass ($$m_{\beta \beta }$$ m β β ) sensitivity of 9–15 meV, and a$$3\sigma $$ 3 σ discovery sensitivity of$$1\cdot 10^{27}$$ 1 · 10 27  yr, corresponding to an$$m_{\beta \beta }$$ m β β range of 12–21 meV. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  3. The Cryogenic Underground Observatory for Rare Events (CUORE) is a detector array comprised by 988 5 cm × 5 cm × 5 cm TeO 2 crystals held below 20 mK, primarily searching for neutrinoless double-beta decay in Te 130 . Unprecedented in size among cryogenic calorimetric experiments, CUORE provides a promising setting for the study of exotic throughgoing particles. Using the first tonne year of CUORE’s exposure, we perform a search for hypothesized (FCPs), which are well-motivated by various standard model extensions and would have suppressed interactions with matter. Across the searched range of charges e / 24 e / 2 no excess of FCP candidate tracks is observed over background, setting leading limits on the underground FCP flux with charges e / 24 e / 5 at 90% confidence level. Using the low background environment and segmented geometry of CUORE, we establish the sensitivity of tonne-scale subkelvin detectors to diverse signatures of new physics. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Abstract We present the results of a search for core-collapse supernova neutrinos, using long-term KamLAND data from 2002 March 9 to 2020 April 25. We focus on the electron antineutrinos emitted from supernovae in the energy range of 1.8–111 MeV. Supernovae will make a neutrino event cluster with the duration of ∼10 s in the KamLAND data. We find no neutrino clusters and give the upper limit on the supernova rate to be 0.15 yr−1with a 90% confidence level. The detectable range, which corresponds to a >95% detection probability, is 40–59 kpc and 65–81 kpc for core-collapse supernovae and failed core-collapse supernovae, respectively. This paper proposes to convert the supernova rate obtained by the neutrino observation to the Galactic star formation rate. Assuming a modified Salpeter-type initial mass function, the upper limit on the Galactic star formation rate is <(17.5–22.7)Myr−1with a 90% confidence level. 
    more » « less
  5. Abstract We present the results of a time-coincident event search for low-energy electron antineutrinos in the KamLAND detector with gamma-ray bursts (GRBs) from the Gamma-ray Coordinates Network and Fermi Gamma-ray Burst Monitor. Using a variable coincidence time window of ±500 s plus the duration of each GRB, no statistically significant excess above the background is observed. We place the world’s most stringent 90% confidence level upper limit on the electron antineutrino fluence below 17.5 MeV. Assuming a Fermi–Dirac neutrino energy spectrum from the GRB source, we use the available redshift data to constrain the electron antineutrino luminosity and effective temperature. 
    more » « less
  6. Abstract Preceding a core-collapse supernova (CCSN), various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande (SK) via inverse beta decay interactions. Once these pre-supernova (pre-SN) neutrinos are observed, an early warning of the upcoming CCSN can be provided. In light of this, KamLAND and SK, both located in the Kamioka mine in Japan, have been monitoring pre-SN neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and SK on pre-SN neutrino detection. A pre-SN alert system combining the KamLAND detector and the SK detector was developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-SN neutrino signal from a 15Mstar within 510 pc of the Earth at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hr in advance. 
    more » « less